УЗНАЙ ЦЕНУ

(pdf, doc, docx, rtf, zip, rar, bmp, jpeg) не более 4-х файлов (макс. размер 15 Мб)


↑ вверх
Тема/Вариантлазер, основы работы и применение
ПредметФизика
Тип работыкурсовая работа
Объем работы24
Дата поступления12.12.2012
1100 ₽

Содержание





Введение 3

1 Физические основы работы лазера 4

2 Схема лазера 9

3 Классификация лазеров 12

4 Применение лазеров 14

Практическое задание 19

Заключение 23

Список литературы 24 Список литературы

Введение

Введение



Лазер является одним из наиболее интересных научно-технических достижений XX века. Создание лазеров привело ко второму рождению научной и технической оптики и развитию совершенно новых отраслей промышленности.

Лазеры находят разнообразное применение в технологии обработки материалов, становятся частью многих специализированных информацион-ных систем, используются в научных исследованиях, медицине, военной технике. В обозримом будущем лазерные технологии, связь, химия и энергетика должны привести к революционным преобразованиям в этих областях.





































1 Физические основы работы лазера



В любом физическом теле, твердом, жидком или газообразном, молекулы движутся, колеблются, вращаются; то же делают и атомы. А в атомах перескакивают с орбиты на орбиту электроны, при этом они обмениваются энергией.

В соответствии с квантовой теорией излучения энергия элементарных излучателей может изменяться только скачками, кратными некоторому значению, постоянному для данной частоты излучения. Минимальная «порция» энергии называется квантом энергии. Обозначается квант следующим образом: энергия равна произведению частоты на некоторую постоянную, называемую постоянной Планка:

,

Здесь - постоянная Планка, численное значение , - частота электромагнитного излучения.

При этом излучение рассматривается как поток элементарных частиц, которым присвоено название фотона. Фотоны обладают количеством движения

,

где - скорость света.

Эти формулы поражают своей простотой, хотя описывают явления с такими сложными объектами, как фотоны. Формулы являются основными в квантовой теории света, так как они связывают энергию кванта света с частотой, а также и длиной волны, поскольку

,

где - длина плоской монохроматической волны.

Фотон является одновременно и частицей, и волной, т.е. признается возможным соединение в одном объекте волновых и механических свойств, вытекающее из постулатов принципиально новой науки о микромире – волновой, или квантовой, механики.

Взаимодействие элементарных излучателей (микросистема) и света характеризуется энергией и импульсом как микросистемы, так и кванта света. Причем эти параметры оцениваются и до, и после столкновения кванта и микросистемы. Сталкиваясь с микросистемой, квант света возбуждает атомы и молекулы, отдавая им свою энергию. Наиболее сильное (резонансное) взаимодействие происходит тогда, когда частота колебаний кванта света совпадает с одной из собственных частот колебаний электронов микросистемы. В этом случае атомы и молекулы, находясь в возбужденном состоянии, становятся вторичными излучателями квантов. При взаимодействии света и микросистемы происходит обмен энергией, при котором рождаются одни и уничтожаются другие кванты света. В соответствии с законом сохранения энергии возможны три вида взаимодействия. При первом виде взаимодействия наблюдается полное поглощение кванта света микросистемой – энергия микросистемы возрастает. При втором виде взаимодействия происходит лишь частичное поглощение энергии, а часть энергии рассеивается. В третьем случае поглощение энергии идет с последующим испусканием ее – наблюдается излучение света.

Электромагнитное излучение, взаимодействуя с микросистемой, изменяет ее внутреннюю энергию. Так как микросистема включает в себя молекулы, атомы, ионы и электроны, то их энергетическое состояние можно представить в виде дискретного ряда энергии, обозначаемой на рисунке 1 в виде энергетических уровней.

На рисунке показана схема двухуровневой энергетической системы. Энергию частиц, находящихся на нижнем уровне, обозначим через , а энергию частиц, находящихся на верхнем уровне, через .

Литература





1. Борейшо А.С. Лазеры: устройство и действие. – СПб: Мех. Ин-т, 1992. – 215 с.

2. Мэйтленд А. Введение в физику лазеров. – М.: Наука, 1978. – 408 с.

3. Федоров Б.Ф. Лазеры: основы устройства и применения. – М.: ДОСААФ, 1988. – 190 с.
Уточнение информации

+7 913 789-74-90
info@zauchka.ru
группа вконтакте