УЗНАЙ ЦЕНУ

(pdf, doc, docx, rtf, zip, rar, bmp, jpeg) не более 4-х файлов (макс. размер 15 Мб)


↑ вверх
Тема/ВариантФизические основы получения информации
ПредметМетрология, стандартизация, сертификация(разное)
Тип работыкурсовая работа
Объем работы42
Дата поступления12.12.2012
890 ₽

Содержание

АННОТАЦИЯ Целью данного курсового проекта является проектирование индукционного тахометра. Для выполнения данной цели был проведен обзор тахометров различного принципа действия. Для каждого преобразователя были выделены достоинства и недостатки. После анализа преобразователей, один из них был взят за основу для дальнейшего проектирования. В работе произведены расчеты основных параметров и элементов конструкции индукционного тахометра. На основании расчетов создан сборочный чертеж и деталировка. По результатам проектирования были сделаны выводы, которые занесены в заключение. Цель курсового проекта была достигнута. Разработан индукционный тахометр, расчетные характеристики которого удовлетворяют заданным. СОДЕРЖАНИЕ ВВЕДЕНИЕ 5 1 ОБЗОР ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ ВРАЩЕНИЯ 6 1.1 Оптический тахометр 6 1.2 Центробежные тахометры 7 1.3 Датчики с переменным магнитным сопротивлением 9 1.4 Электрические тахометры постоянного тока 10 1.5 Индукционный тахометр 12 1.6 Вывод 14 2 ТЕХНИЧЕСКОЕ ЗАДАНИЕ 15 2.1 Введение 15 2.2 Источники разработки 15 2.3. Технические требования 15 2.3.1 Состав изделия 15 2.3.2 Технические параметры 16 2.3.3 Принцип работы 16 2.3.4 Условия эксплуатации 16 3 КОНСТРУКТОРСКИЙ РАЗДЕЛ 18 3.1 Разработка структурной схемы 18 3.2 Расчет функции преобразования 19 3.3 Расчет тепловых расширений 26 3.4 Соединение зубчатой шестерни и вала 29 3.5 Расчет погрешностей 30 ЗАКЛЮЧЕНИЕ 32 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 33 Приложение А 35 Приложение Б 37 Приложение В 38 Приложение Г 39 Приложение Д 40 Приложение Е 41

Введение

ВВЕДЕНИЕ Измерительный преобразователь – это техническое устройство, построенное на определенном физическом принципе действия, выполняющее одно частное измерительное преобразование. Работа измерительных преобразователей протекает в сложных условиях, так как объект измерения – это, как правило, сложный, многогранный процесс, характеризующийся множеством параметров, каждый из которых действует на измерительный преобразователь совместно с остальными параметрами. Нас же интересует только один параметр, который называем измеряемой величиной, а все остальные параметры процесса считаем помехами. Принцип действия индукционных преобразователей основан на использовании явления электромагнитной индукции. Индукционные преобразователи широко применяются для измерения параметров магнитных полей, частоты вращения, линейных и угловых скоростей, параметров вибрации и сейсмических колебаний, расхода жидких веществ. Погрешность индукционных преобразователей в значительной степени зависит от режима, в котором они работают. Наибольшая погрешность возникает в режиме, при котором через нагрузку течет значительный ток. Основные тенденции, характерные для современной техники – это повышение точности и расширение частотного диапазона измеряемых величин. Эти тенденции в полной мере относятся к индукционным измерительным преобразователям, область применения которых в последние годы значительно расширилась, а метрологические характеристики благодаря ряду новых интересных решений намного улучшились. Индукционные преобразователи обладают высокой надежностью и высокими метрологическими и эксплуатационными характеристиками. 1 ОБЗОР ПРЕОБРАЗОВАТЕЛЕЙ ЧАСТОТЫ ВРАЩЕНИЯ Обзор преобразователей частоты вращения представлен на листе 1 графической части курсового проекта. 1.1 Оптический тахометр В наиболее простой форме оптический тахометр состоит из источника света и оптического приемника — фотодиода или фототранзистора. Вращающееся тело либо снабжают отражающими метками расположенными регулярно по окружности, на которые направляется световой пучок, либо соединяют с диском, имеющим попеременно прозрачные и непрозрачные сектора, который располагают между источником и приемником света. Получая модулированный скачкообразными изменениями отражения или пропускания поток, фотоприемник выдает электрический сигнал с частотой, пропорциональной скорости вращения, и с амплитудой, не зависящей от этой скорости. Рисунок 2 – Принципиальная схема конического тахометра Диапазон измеряемых скоростей зависит, с одной стороны, от числа скачков оптических свойств (риски, щели, прозрачные сектора, нанесенные на диск или на вращающееся тело), а с другой — от полосы пропускания приемника и связанных с ним электрических схем. Для измерений малых скоростей используются диски с большим числом щелей (от 500 до нескольких тысяч); в измерениях больших скоростей, например 105 – 106 об/мин в случае ультрацентрифуг, диск имеет только одну щель, и максимальная измеряемая скорость определяется верхней граничной частотой электрической цепи. Достоинства оптического тахометра: простота конструкции, линейная зависимость между входным и выходным сигналом, независимость выходного сигнала фотоприемника от скорости вращения, широкий диапазон измерений. Недостатки: возможно загрязнение отражающих меток или секторов диска, малая надежность, громоздкость, сложность изготовления. 1.2 Центробежные тахометры Центробежные тахометры выполняются в двух вариантах: конический (рисунок 2) и кольцевой (рисунок 3). В коническом тахометре на шарнирах, вращающихся вместе с осью, установлены грузы m, которые под действием центробежных сил расходятся, перемещая вдоль оси муфту 1 и сжимая пружину 2.

Литература

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 1 Анурьев, В.И., Справочник конструктора-машиностроителя: В 3-х т. Т.1. [Текст] / 5-е изд., перераб. и доп. – М.: Машиностроение, 1978 – 728 с., ил. 2 Атамалян, Э. Г., Приборы и методы измерения электрических величин: Учеб. пособие [Текст] / Э. Г. Атамалян. – М.: Высш. школа, 1982 – 223 с., ил. 3 Беляев, В.Н. Краткий справочник машиностроителя / В.Н. Беляев, Л.С. Борович, В.В. Досчатов и др. – М.: Машиностроение, 1966. – 775 с., ил. 4 Боднер, В.А. Измерительные приборы / В.А. Боднер, А.В. Алферов. – М.: Изд-во стандартов, 1986. – 392 с. 5 Воронцов, Л.Н. Теория и проектирование контрольных автоматов / Л.Н. Воронцов, С.Ф. Корндорф, В.А. Трутень и др. – М.: Высшая школа, 1980. – 560 с. 6 Гжиров, Р.И. Краткий справочник конструктора / Р.И. Гжиров. – Л.: Машиностроение. 1984. – 464 с. 7 Касаткин, А.С., Немцов, М.В., Электротехника: Учеб. пособие для вузов. – 4-е изд., перераб. – М.: Энергоатомиздат, 1983. – 440 с., ил. 8 Костенко, М. П., Пиотровский, Л. М., Электрические машины. В 2-х ч. Ч. 1 – Машины постоянного тока. Трансформаторы. Учебник для студентов высш. техн. учеб. заведений. – Изд. 3-е, перераб. – Л.: Энергия, 1972. 9 Лёвшина, Е.С., Новицкий, П.В., Электрические измерения физических величин: (Измерительные преобразователи): Учеб. пособие для вузов. – Л.: Энергоатомиздат. Ленингр. отд-ние, 1983.- 320 с., ил. 10 Ногачева, Т.И., Методические указания к выполнению курсового проекта по дисциплине «Физические основы получения информации» для специальности 200101 «Приборостроение» [Текст] / Т.И. Ногачева. – Орел: ОрелГТУ, 2006 – 18 с. 11 Осадчий, Е.П. Проектирование датчиков для измерения механических величин / Под ред. Е.П. Осадчего. – М.: Машиностроение, 1979. – 480 с., ил. 12 Проектирование электрических машин: Учеб для вузов / И.П. Копылов, Б.К. Клоков, В.П. Морозкин, Б.Ф.Токарев; под ред. И.П. Копылова. – 3-е изд., испр. и доп. – Высш. шк., 2002. – 757 с.: ил. 13 Справочное руководство по черчению / В.Н. Богданов, А.П. Малежик и др. – М.: Машиностроение, 1989. – 864 с.: ил. 14 Электрические измерения неэлектрических величин / А.М. Туричин, П.В. Новицкий, Е.С. Лёвшина и др. – Изд. 5-е, перераб. и доп. – Л.: «Энергия», 1975. – 576 с., ил.
Уточнение информации

+7 913 789-74-90
info@zauchka.ru
группа вконтакте