УЗНАЙ ЦЕНУ

(pdf, doc, docx, rtf, zip, rar, bmp, jpeg) не более 4-х файлов (макс. размер 15 Мб)


↑ вверх
Тема/ВариантИЗМЕНЕНИЕ БЕЛКОВ И ДРУГИХ АЗОТИСТЫХ ВЕЩЕСТВ ПРИ ТЕПЛОВОЙ ОБРАБОТКЕ МЯСА, РЫБЫ И БЛЮД ИЗ НИХ
ПредметХимия
Тип работыкурсовая работа
Объем работы38
Дата поступления12.12.2012
890 ₽

Содержание

Содержание Введение ..........................................3 1 Физико-химические процессы, протекающие в пищевых продуктах при их кулинарной обработке ..............................7 1.1 Гидратация и дегидратация белков .........................7 1.2 Денатурация белков ..................................14 1.3 Деструкция белков .............................19 1.4 Агрегирование белков .................................21 1.5 Пенообразование ......................................22 2 Влияние способов и режимов тепловой обработки мяса и мясопродуктов на изменение их физико-химических показателей и биологической ценности ...............................23 2.1 Изменение белков мяса в процессе нагрева ......................23 2.2 Влияние температуры и способа нагрева на скорость и температуру денатурации белков .............................24 2.3 Изменение заряженных групп и рН белков в процессе тепловой обработки мяса .........................25 2.4 Изменение растворимости мышечных белков и дезагрегация белков соединительных тканей в процессе нагрева мяса ....................26 2.5 Коагуляция белков и ее влияние на качественные изменения, и структуру мясопродуктов .....................................28 3 Влияние способов и режимов тепловой обработки рыбы и нерыбных продуктов моря на изменение их физико-химических показателей и биологической ценности ....................................................29 4 Влияние процессов изменения белков и других азотистых веществ на качество кулинарной продукции из мяса и рыбы ......................33 Заключение ........................................36 Библиографический список ........................................................................................37 Приложения .............................................................................................................38

Введение

ВВЕДЕНИЕ Белки - это азотистые высокомолекулярные соединения, состоящие из аминокислот, основной пластический материал, из которого строятся ткани организма. Например, в составе скелетных мышц белка содержится более 20%. Белки, из которых построены клетки тела, имеют сложное строение и высокую химическую активность. Они участвуют во всех жизненных основных процессах - обмене веществ, росте, размножении и мышлении. Вступая в разнообразные реакции, они изменяются и разрушаются, а поскольку образующиеся продукты белкового распада не могут быть использованы для обратного синтеза и выводятся из организма, то для восполнения этих потерь необходима доставка новых белковых продуктов извне с пищей. Белки делятся на простые и сложные. Простые построены только из аминокислот. В состав сложных белков, помимо аминокислот, входят еще и различные безазотистые компоненты (остатки фосфорной кислоты, углеводы и другие вещества). К белковым веществам относятся ферменты - важнейшие ускорители биохимических реакций в организме. Белками являются также и некоторые гормоны - тонкие регуляторы обменных процессов, а также нуклепротеины - регуляторы синтеза белков в организме. Белки могут использоваться и как источник энергии: при расщеплении белка из безазотистой части его молекулы образуются углеводы, дальнейшее превращение которых и обеспечивает освобождение энергии. Поскольку другая часть молекулы - азотистые компоненты белка - окислению в организме не подвергается, то при окислении 1 г белка в целом освобождается ровно столько же энергии, сколько и при окислении 1 г углеводов, то есть 4,0 ккал. Белковый минимум, то есть количество белка в пище, которое покрывает лишь расходы энергии при основном обмене на обновление тканей, составляет 1,5 г на килограмм массы в сутки, то есть при массе 70 кг человек должен ежедневно получать порядка 100 г белка. В нормальных условиях белки должны составлять 11-13% суточной калорийности. При повышенном обмене веществ, в том числе при большой физической нагрузке, потребление белка увеличивается более чем в 1,5 раза, поэтому необходимо потреблять в сутки до 170-200 г белка, что составляет до 15% суточной калорийности. Недостаток белковых запасов, временно возникающий в организме при длительной и напряженной работе, компенсируется тем, что менее жизненно важные органы отдают свой белок для деятельности других, более важных органов. В первую очередь используются белки крови, печени, скелетных мышц. Масса печени, мышц при недостаточном питании резко снижается. Масса же сердца и мозга остается почти без изменений. Белковая недостаточность приводит к тому, что организм начинает "поедать сам себя", его мышечная масса продолжает уменьшаться. При белковом голодании наблюдаются отеки, расстройство желудка, воспаление кожного покрова, снижение сопротивляемости к заболеваниям. Биологическая ценность белков определяется содержанием незаменимых аминокислот (НАК), их соотношением и перевариваемостью. Белки, содержащие все НАК (их восемь: триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин, фенилаланин) и в тех соотношениях, в каких они входят в белки нашего организма, называются полноценными. К ним относятся белки мяса, рыбы, яиц, молока. В растительных белках, как правило, недостаточно лизина, метионина, триптофана и некоторых других НАК. Так, в гречневой крупе недостает лейцина, в рисе и пшене - лизина. Незаменимая аминокислота, которой меньше всего в данном белке, называется лимитирующей. Остальные аминокислоты усваиваются в адекватных с ней количествах. Один продукт может дополнять другой по содержанию аминокислот. Однако такое взаимное обогащение происходит только в том случае, если эти продукты поступают в организм с разрывом во времени не более чем 2-3 ч. Поэтому большое значение имеет сбалансированность по аминокислотному составу не только суточных рационов, но и отдельных приемов пищи и даже блюд. Это необходимо учитывать при создании рецептур блюд и кулинарных изделий, сбалансированных по содержанию НАК. Наиболее удачными комбинациями белковых продуктов являются: " мука + творог (ватрушки, вареники, пироги с творогом); " картофель + мясо, рыба или яйцо (картофельная запеканка с мясом, мясное рагу, рыбные котлеты с картофелем и др.); " гречневая, овсяная каша + молоко, творог (крупеники, каши с молоком и прочее); " бобовые с яйцом, рыбой или мясом. Наиболее эффективное взаимное обогащение белков достигается при их определенном соотношении, например: " 5 частей мяса + 10 частей картофеля; " 5 частей молока + 10 частей овощей; " 5 частей рыбы + 10 частей овощей; " 2 части яиц + 10 частей овощей (картофеля) и т. д. Усвояемость белков зависит от их физико-химических свойств, способов и степени тепловой обработки продуктов. Белки многих растительных продуктов плохо перевариваются, так как заключены в оболочки из клетчатки и других веществ, препятствующих действию пищеварительных ферментов (бобовые, крупы из цельных зерен, орехи и др.). Кроме того, в ряде растительных продуктов содержатся вещества, тормозящие действие пищеварительных ферментов (фазиолин фасоли). Например, из 18,75 г белка, содержащегося в 100 г мяса, усваивается 18 г, а из 8,68 г белка хлеба - лишь 4 г. Таким образом, белки продуктов животного происхождения в среднем в 1,5 раза эффективнее белков растительного происхождения. По скорости переваривания на первом месте находятся белки яиц, молочных продуктов и рыбы, затем мяса (говядина, свинина, баранина) и, наконец, хлеба и крупы. Из белков животных продуктов в кишечнике всасывается более 90% аминокислот, из растительных 60-80%. Размягчение продуктов при тепловой обработке и протирание их улучшает усвояемость белков, особенно растительного происхождения. Однако при избыточном нагревании содержание НАК может уменьшиться. Так, при длительной тепловой обработке в ряде продуктов снижается количество доступного для усвоения лизина. Этим объясняется меньшая усвояемость белков каш, сваренных на молоке, по сравнению с белками каш, сваренных на воде, но подаваемых с молоком. Чтобы повысить усвояемость каш, рекомендуется крупу предварительно замачивать для сокращения времени варки и добавлять молоко перед окончанием тепловой обработки. Качество белка оценивается рядом показателей (КЭБ - коэффициент эффективности белка, ЧУБ - чистая утилизация белка и др.), которые рассматривает физиология питания. Цели и задачи работы: " изучить процессы изменения белков при тепловой обработке мяса и рыбы; " проанализировать влияние процессов изменения белков и других азотистых веществ на качество кулинарной продукции из мяса и рыбы; " сделать выводы. 1 Физико-химические процессы, протекающие в пищевых продуктах при их кулинарной обработке 1.1 Гидратация и дегидратация белков В технологических процессах производства продукция общественного питания белки пищевых продуктов подвергаются гидратации, дегидратации, денатурации и деструкции, а азотистые низкомолекулярные вещества - пиролизу с образованием новых химических веществ. Указанные процессы по-разному влияют на качество, пищевую ценность и безопасность пищи. Пищевая ценность, вкусовые качества пищевых продуктов, их стойкость при хранении обусловлены входящими в их состав веществами органического и неорганического происхождения. Из всех компонентов продуктов питания наибольшее влияние на их свойства оказывает вода. Во многих пищевых продуктах, и даже в тех, в которых содержание воды было преднамеренно снижено в процессе обработки с целью повышения их стойкости при хранении, на ее долю приходится наибольший удельный вес. Так, в сушеном картофеле, общая влажность которого составляет 6,5 %, на каждые 3,6 моль воды приходится 3,1 моль крахмала и 0,46 моль белка. Характер воздействия воды на процессы, протекающие при производстве пищевых продуктов, определяется, прежде всего, общим количеством воды и формами связи ее с другими компонентами, в основном с белками. По количеству влаги пищевые продукты целесообразно разделить на три основные группы: продукты с высокой влажностью (более 40 % воды), со средней, или промежуточной, влажностью (10...40 % воды), и с низкой влажностью (менее 10 % воды). Различают четыре формы связи влаги с материалами, и в частности с

Литература

БИБЛИОГРАФИЧЕСКИЙ СПИСОК 1. Технология продукции общественного питания. В двух томах. Том 1. Физико-химические процессы, протекающие в пищевых продуктах при их кулинарной обработке / А.С. Ратушный, В.И. Хлебников, Б.А. Баранов и др. - М.: Мир, 2003. - 351с: ил. 2. Технология приготовления пищи / Н.И. Ковалев, М.Н. Куткина, В.А. Кравцова - М.: Издательский Дом "Деловая литература", Издательство "Омега-Л", 2005. - 480 с. 3. Пищевая химия / А.П. Нечаев, С.Е. Траубенберг, А.А. Кочеткова и др. - СПб.: ГИОРД, 2004. - 640 с. 4. Профессиональные кулинарные журналы: "Питание и общество", "Шеф", "Гастроном". 5. www.izosoft.ru 6. www.daler.ru"
Уточнение информации

+7 913 789-74-90
info@zauchka.ru
группа вконтакте