УЗНАЙ ЦЕНУ

(pdf, doc, docx, rtf, zip, rar, bmp, jpeg) не более 4-х файлов (макс. размер 15 Мб)


↑ вверх
Тема/ВариантВариант 55 (Задание 4,15,25,32,46,57,63,74)
ПредметТеория вероятности и математическая статистика
Тип работыконтрольная работа
Объем работы8
Дата поступления11.02.2010
400 ₽

Задание 4

Для сигнализации на складе установлены три независимо работающих устройства. Вероятность того, что при необходимости первое устройство сработает, составляет Р1,

для второго и третьего устройства эти вероятности равны соответственно Р2 и Р3. Найти вероятность того, что в случае необходимости сработают:

а) все устройства;

б) только одно устройство;

в) хотя бы одно устройство.

 

р1 = 98%;        р2 = 85%;        р3 = 80%;

 

Задание 15

В партии, состоящей из n одинаково упакованных изделий, смешаны изделия двух сортов, причем k из этих изделий – первого сорта, а остальные изделия – второго сорта.

Найти вероятность того, что взятые наугад два изделия окажутся:

а) одного сорта;

б) разных сортов.

 

n = 40;             k = 25;

 

Задание 25

В данный район изделия поставляются двумя фирмами их объем находится в соотношении 5:8. Среди продукции первой фирмы стандартные изделия составляют 90%,

у второй фирмы этот показатель 85%. 

а) Какова вероятность, что взятое наугад изделие оказалось стандартным?

б) Взятое наугад изделие оказалось стандартным. Найти вероятность того, что оно изготовлено первой фирмой.

 

Задание 32

Вероятность того, что в результате проверки изделию будет присвоен знак «изделие высшего качества» равна p.

1) На контроль поступило n изделий. Какова вероятность того, что знак высшего качества будет присвоен:

а) ровно m изделиям;

б) более чем k изделиям;

в) хотя бы одному изделию;

г) указать наивероятнейшее количество изделий, получивших знак высшего качества, и найти соответствующую ему вероятность.

2). При тех же условиях найти вероятность того, что в партии из N изделий знак высшего качества получает:

а) ровно половина изделий;

б) не менее чем  k1, но не более, чем k2 изделий.

 

n=7;   p=0,3;   m=4;   k=5;   N=24;   k1= 5;    k2=15.

 

Задание 46

В лотерее на каждые 100 билетов приходится m1 билетов с выигрышем a1 тыс. рублей, m2 билетов с выигрышем a2 тыс. рублей,  m3 билетов с выигрышем a3 тыс. рублей и т.д.

Остальные билеты из сотни не выигрывают.

Составить закон распределения величины выигрыша для владельца одного билета и найти его основные характеристики: математическое ожидание, дисперсию и среднее

квадратическое отклонение. Пояснить смысл указанных характеристик.

 

а1=6;      а2=5;      а3= 4;     а4= 3;     а5= 2;     а6= 1;

m1=2;     m2=4;    m3=6;     m4=10;   m5=15;   m6=20.

 

Задание 57

Вес изготовленного серебряного изделия должен составлять а граммов.

При изготовлении возможны случайные погрешности, в результате которых вес изделия случаен, но подчинен нормальному закону распределения со средним квадратическим отклонением σ граммов.

Требуется найти вероятность того, что:

а) вес изделия составит от α до β граммов;

б) величина погрешности в весе не превзойдет δ граммов по абсолютной величине.

 

a = 120;           σ = 5;              α = 100;          β = 150;          δ = 10;

 

Задание 63

По итогам выборочных обследований для некоторой категории сотрудников величина их дневного заработка X руб. и соответствующее количество сотрудников ni

представлены в виде интервального статистического распределения.

а) Построить гистограмму относительных частот распределения.

б) Найти основные характеристики распределения выборочных данных: среднее выборочное значение, выборочную дисперсию и выборочное среднее квадратическое отклонение.

в) Оценить генеральные характеристики по найденным выборочным характеристикам.

г) Считая, что значения признака X в генеральной совокупности подчинены нормальному закону распределения, найти доверительный интервал для оценки математического

ожидания (генерального среднего значения) с надежностью γ , считая, что генеральная дисперсия равна исправленной выборочной дисперсии.

 

X

40-46

46-52

52-58

58-64

64-70

 

ni

5

10

20

15

10

g = 0,92

 

Задание 74

С целью анализа взаимного влияния прибыли предприятия и его издержек выборочно были проведены наблюдения за этими показателями в течение ряда месяцев:

X – величина месячной прибыли в тыс. руб., Y – месячные издержки в процентах к объему продаж.

Результаты выборки сгруппированы и представлены в виде корреляционной таблицы, где указаны значения признаков X и Y и количество месяцев, за которые наблюдались

соответствующие пары значений названных признаков.

а) По данным корреляционной таблицы найти  условные средние  и .

б) Оценить тесноту линейной связи между признаками X и Y.

в) Составить уравнения линейной регрессии Y по X и X по Y .

г) Сделать чертеж, нанеся на него условные средние и найденные прямые регрессии.

д) Оценить силу связи между признаками с помощью корреляционного отношения.

 

       X

Y

25

35

45

55

65

ny

15

4

 

 

 

 

 

20

2

6

 

 

 

 

25

 

4

6

2

 

 

30

 

 

5

8

4

 

35

 

 

2

6

7

 

40

 

 

 

 

4

 

nx

 

 

 

 

 

 

 

Уточнение информации

+7 913 789-74-90
info@zauchka.ru
группа вконтакте